REPUBLIQUE DU CAMEROUN Paix-Travail-Patrie

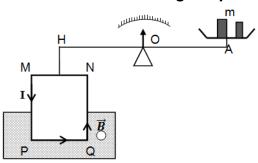
MINISTERE DES ENSEIGNEMENTS SECONDAIRES

DELEGATION REGIONALE DE L'OUEST

LYCEE BILINGUE BP: 454 TEL : 33 45 20 94 DSCHANG

MINISTRY OF SECONDARY EDUCATION

REGIONAL DELEGATION FOR THE WEST


DIVISIONAL DELEGATION FOR MENOUA

GOVERNMENT BILINGUAL HIGH SCHOOL P.O. BOX 454 PHONE: 33 45 20 94 DSCHANG

EXAMEN	Baccalauréat Blanc	SÉRIE	С	SESSION	Mars 2019
ÉPREUVE	Physique	DURÉE	4heures	COEFFICIENT	4

Exercice 1 : Mouvements dans les champs de forces et leurs applications / 6 points.

Partie A : Interactions magnétiques / 2 points

On considère une bobine Plate rectangulaire MNPQ, de longueur a = 8.0 cm et de largeur b = 5, 0 cm comportant N = 20 spires. (MP = NQ = a et MN = PQ = b)

On monte cette bobine comme le montre la figure 1.

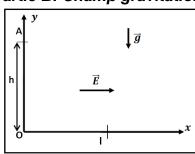

En l'absence de courant, le fléau est horizontal. On fait passer un courant I = 6.0 A dans le cadre. Pour rétablir l'équilibre du dispositif, on place sur le plateau une masse m = 4.5 q.

Figure 1

Données : OH = d = 9.0 cm ; OA = d' = 12.0 cm ; $g = 10 \text{ m.s}^{-2}$

- **1.** Représenter sur un schéma clair la force électromagnétique \vec{F} qui s'exerce sur la portion PQ du cadre. Nommer cette force. **0,5pt**
- **2.** Déterminer les caractéristiques du vecteur champ magnétique \vec{B} (sens et valeur).
- **3.** Que se passe-t-il si le cadre est entièrement plongé dans le champ magnétique \vec{B} et si on maintient le courant électrique I précédent, le plateau restant vide ? **0,5pt**

Partie B: Champ gravitationnel et champ électrique / 2,5 points

Dans tout l'exercice, on supposera l'existence d'un champ de pesanteur uniforme $g = 10 \text{ m.s}^{-2}$. Les expériences ont lieu dans le vide où tous les frottements sont négligeables.

Une petite sphère S de masse m = 5 g porte une charge électrique q = 4.10^{-7} C. S part de A à vitesse nulle et se déplace dans une zone où, en plus du champ \vec{g} , règne un champ électrostatique uniforme \vec{E} (E = 10^4 V.m⁻¹). On donne h = 0,5 m.

- 1. Comparer les valeurs de la force électrostatique F_e et du poids P. Conclure. 0,5pt
- 2. Etablir les équations horaires du mouvement. En déduire la nature de la trajectoire.
- **3.** Calculer la position du point l. **0,5pt**
- **4.** Déterminer le vecteur vitesse $\overrightarrow{V_l}$.

Partie C: Mouvement d'un satellite / 1,5 point

On admet que la Terre a une répartition de masse à symétrie sphérique. Elle est considérée comme une sphère de centre O, de rayon R = 6370 km et de masse $M = 5,97.10^{24} \text{ kg}$.

Le constante de gravitation universelle est G = 6,67.10⁻¹¹ N.kg⁻².m²

Un satellite, assimilé à un point matériel, décrit une orbite circulaire de rayon r dans le plan équatorial, autour de la Terre.

1. Montrer que le mouvement du satellite est uniforme.

0,5pt

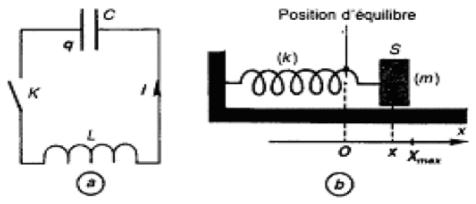
1pt

2. Etablir l'expression de sa vitesse v en fonction de r, M et G.

0,5pt

t.me/KamerHighSchool

3. En déduire l'expression de la fréquence N du mouvement du satellite en fonction de r, M et G, puis calculer sa valeur si le satellite est située à une altitude h=296 km.


Exercice 2 : Systèmes oscillants / 6 points

Partie A : Addition des grandeurs sinusoïdales de même fréquence / 1point

 $y_1 = 3\sin{(2\pi ft)}$ en (cm) et $y_2 = 4\sin{(2\pi ft + \frac{\pi}{2})}$ en (cm) sont les équations horaires de deux mouvements vibratoires. Déterminer par la méthode de Fresnel l'équation horaire du mouvement résultant $y = y_1 + y_2$.

Partie B : Oscillateurs mécanique et électrique / 5 points

1. On réalise le circuit de la figure ci-dessous (fig. a); la bobine, de résistance négligeable, a une inductance L = 50 mH; la capacité du condensateur vaut $C = 5 \mu F$. On ferme l'interrupteur K.

1.1. Quel phénomène se produit dans le circuit?

- 0,25pt
- **1.2.** En utilisant le sens positif du courant de la figure a, établir l'équation différentielle liant la charge q de l'armature de gauche du condensateur à sa dérivée seconde par rapport au temps.

0,5pt

- 1.3. En déduire l'expression littérale de la période propre T du circuit, ainsi que sa valeur numérique.
 0,5pt
- **2.** On réalise maintenant un pendule élastique horizontal en accrochant, à l'extrémité d'un ressort de raideur k, un solide S de masse m = 100 g, qui peut se déplacer sans frottement sur un support horizontal (fig. b).

On écarte le solide S d'une distance X_{max} par rapport à sa position d'équilibre O et on le lâche sans vitesse à la date t = 0.

- **2.1.** Soit x l'élongation, à l'instant t, du centre d'inertie G du solide S.
 - a) Exprimer, à chaque instant, en fonction de k, m, x et $\frac{dx}{dt}$, l'énergie cinétique Ec, l'énergie potentielle Ep et l'énergie mécanique E du système ressort + solide S. 0,75pt
 - **b)** Que peut-on dire de E ? Pourquoi ?

0,5pt

- 2.3. À partir de l'étude énergétique, établir l'équation différentielle liant l'abscisse x de G à sa dérivée seconde par rapport au temps.0,5pt
- **2.4.** En déduire l'expression littérale de la période T_0 des oscillations du pendule ainsi que sa valeur numérique si $k = 25 \text{ N.m}^{-1}$.
- **3.** En comparant les équations qui régissent les deux systèmes étudiés, mettre en évidence une analogie entre les grandeurs mécaniques et électriques; pour cela, préciser sous forme de tableau les grandeurs mécaniques correspondant, respectivement :
- à la charge q;
- à la capacité C;

t.me/KamerHighSchool

- à l'intensité i du courant ;
- à l'inductance L de la bobine.

1pt

4. Utiliser cette analogie pour trouver l'expression de l'énergie E emmagasinée dans le circuit (L, C) à chaque instant. 0,5pt

Exercice 3 : Phénomènes ondulatoires et corpusculaires / 4 points

Partie A : Ondes mécaniques à la surface d'un liquide / 2,5 points

1. On produit des ondes progressives circulaires à la surface de l'eau en utilisant une cuve à ondes. La célérité c de l'onde est mesurée et vaut c = 40 cm.s⁻¹

Le point source S de la surface du liquide contenu dans la cuve à ondes est animé d'un mouvement vertical sinusoïdal de fréquence f = 20 Hz et d'amplitude a supposée constante a = 2 mm (on néglige l'amortissement dû aux forces de frottement).

1.1. L'élongation de S s'écrit : $y_s(t) = a \sin(\omega t + \phi)$.

On suppose qu'à l'instant t = 0, $y_s = 0$ et que S se déplace vers le haut, sens choisi comme sens positif des élongations. Déterminer la valeur de φ et écrire l'expression numérique de y_s (t). 0,5pt

1.2. Calculer la longueur d'onde λ de l'onde progressive.

0,25pt

1.3. On considère un point M de la surface de l'eau situé à d = 12 cm du point S.

Le point **M** vibre-t-il en phase ou en opposition de phase avec le point source **S** ? Justifier.

2. On réalise maintenant des interférences à la surface de l'eau.

Deux points sources synchrones, notés $\mathbf{S_1}$ et $\mathbf{S_2}$, vibrant en phase et ayant même amplitude \mathbf{a} , émettent chacun une onde progressive. On s'intéresse à la zone où les deux ondes interfèrent.

2.1. Donner l'état vibratoire d'un point noté **P** de la surface de l'eau tel que:

 $S_1P= 8$ cm et $S_2P= 17$ cm en justifiant la réponse.

0,5pt

2.2. Combien y a-t-il de points d'amplitude maximale sur le segment S_1S_2 ? S_1S_2 =11cm.

0,5pt

Partie B : Effet photoélectrique / 1,5 point

Une surface métallique est éclairé par une lumière UV de longueur d'onde $\lambda = 0,150 \mu m$. L'énergie cinétique maximale des électrons émis vaut 4,85 eV.

1. Définir travail d'extraction (W₀) et calculer sa valeur.

0,75pt

2. Déterminer la nature du métal en se servant du tableau suivant.

0,25pt

Métal	Cs	Sr	K	Na	Al	Zn
Seuil λ ₀ (μm)	0,66	0,60	0,55	0,50	0,365	0,35

1. Calculer le potentiel d'arrêt U₀

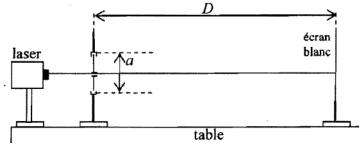
On donne: $1eV = 1,6.10^{-19}J$; charge élémentaire: $e = 1,6.10^{-19} C$; $h=6.62x10^{-34} J.s$; $C = 3.10^8 \text{m/s}$

Exercice 4 : Exploitation des résultats d'une expérience / 4 points

Objectif: Étudier l'influence des divers facteurs dont dépend l'interfrange

Matériel utilisé:

- Une diode -laser
- Trois paires de fentes fines et parallèles montées sur diapositive (écartement des fentes:


 $a_1 = 700 \mu m$; $a_2 = 350 \mu m$; $a_3 = 175 \mu m$)

- Un écran blanc

t.me/KamerHighSchool

Protocole expérimental

On mesure la valeur de l'interfrange en faisant successivement varier la distance D des fentes à l'écran et l'écartement a des fentes. Le tableau suivant est obtenu:

	D(m)	1	2	3	4	5
a ₁ = 700 µm	i (10 ⁻³ m)	1,0	1,9	2,9	3,8	4,7
a ₂ = 350 µm	i (10 ⁻³ m)	2,0	3,9	5,8	7,6	9,6
$a_3 = 175 \mu m$	i (10 ⁻³ m)	4,0	7,7	11,7	15,9	19,3

1. Tracer dans le même repère le graphe i = f(D) pour différentes valeurs de a.

1,75pt

Échelle:

D: 1 cm pour 1 m i: 1cm pour 2x10⁻³ m

- 2. A partir des résultats du tableau et du graphe: énoncer une relation simple entre i et D, puis entre i et a. 1pt
- 3. Pour une mesure de l'écartement a_2 = 350 μm :
- **3.1.** Déterminer la pente de la droite k.

0,75pt

3.1. Déduire la longueur d'onde λ de la lumière utilisée.

0,5pt

Examinateur: Kabong Nono Martial

DOCUMENT ANNEXE A REMETTRE AVEC LA COPIE	
Aucun signe distinctif ne sera toléré	N° anonymat :

				11111			111111									###	11111										Ш		
	ш			ш	ш	ш		ш	ш	Ш					ш					ш		ш		ш	##		ш		##
Ш					Ш	ш		ш	Ш	Ш						ш				ш		ш		ш	Ш		#		##
\blacksquare				ш					ш	ш												ш			###		#		##
Ш					Ш	ш			Ш	Ш										##		ш			Ш		ш		##
Ш				ш																Ш							ш	ш	##
				ш				ш		ш										-		ш					ш		##
																											##		###
Ш									ш											ш		ш							##
																									Ш		ш		###
Ш																				Ш		ш							
Ш								##										###		###		###			##				###
																									Ш		ш		###
Ш																									ш		##		
					Ш	ш		ш	Ш							ш				ш				ш	Ш		ш		###
						ш			ш	ш										ш				ш	Ш				
Ш	Ш		ШШ	Ш	Ш	Ш	11111	Ш	Ш	Ш	Ш	Ш			Ш	###		###		###	Ш	Ш		Ш	Ш	Ш	Ш		##
						ш			Ш																##		ш		###
Ш	Ш		Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	ш	Ш	Ш	Ш	Ш	Ш	Ш		Ш	Ш	Ш	Ш		Ш
Ш				ш		Ш				Ш										Ш							Ш		###
Ш									ш											ш		ш					Ш		
										ш																	ш		###
Ш				Ш																					ш		ш		##
Ш				ш		ш		##	ш	ш										##		ш			ш		ш	Ш	##
Ш				ш		ш		##	Ш											##		ш			##		ш	ш	##
Ш																													###
				ш	ш	ш		ш		Ш										-		ш					ш		###
				ш	Ш	Ш		ш	Ш	Ш					ш	ш				Ш		ш		ш	##		#		##
				ш	ш	ш			ш	ш										ш		ш			ш		ш		##
				ш					Ш	Ш										###					Ш		ш		##
																													##
																				ш		ш							
																									Ш				##
																						1111							###
\blacksquare	ш				ш			ш	ш	ш										ш		ш			Ш		Ш		
																									Ш				##
H										Ш																			₩
H	Ш		Ш	Ш	Ш	Ш	Ш		Ш	Ш	HH					Ш	Ш	$\blacksquare \blacksquare$		Ш		Ш			₩		H		\blacksquare
																													##
\blacksquare	Ш	H	ш	Ш	Ш	Ш	Ш		Ш	Ш	Ш				Ш	Ш	Ш			ш	Ш			Ш	Ш		Ш		
H	Ш	Ш	Ш	Ш	Ш	Ш	Ш		Ш	Ш			Ш		Ш	ШШ	Ш	Ш		Ш	Ш	Ш		Ш	₩		Ш		\blacksquare
					ш			ш	ш											ш		ш							
H			ШШ	\mathbb{H}	Ш	Ш	ШШ		Ш	Ш	Ш				Ш	Ш				###					₩		Ш		\blacksquare
				Ш	Ш	Ш			Ш	Ш		1			Ш	ш	Ш			###				###			Ш		₩
H	Ш		ш	Ш	Ш	ш			Ш	Ш	Hiii	Ш	Ш	Ш	Ш	Ш	Ш	Ш		Ш	Ш	Ш		Ш	₩	шШ	ш		\blacksquare
	Ш			Ш	Ш	Ш			Ш	Ш		Ш			Ш	Ш				Ш				Ш	₩		Ш		₩
\blacksquare	###		Ш	###	₩	ш	Ш	###	###	₩	Ш	###			###	ш	Ш	\blacksquare		###	$\parallel \parallel \parallel \parallel$	Ш		###	₩		Ш		₩
H			ШШ	Ш	Ш				Ш	Ш	Ш		HH			Ш	Ш	Ш		###					₩		##		\blacksquare
\blacksquare																													#
	Ш		Ш	Ш	Ш	Ш	Ш	Ш	ш	Ш	Ш	Ш		Ш	Ш	Ш	Ш	###	Ш	₩	Ш	Ш		ш	₩		ш		₩
H	Ш		ШШ	Ш	Ш	Ш	ШШ	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	ш	Ш	Ш		Ш	Ш	Ш	11111111	Ш	₩	ШШ	##		卌
	11111			11111			11111	++++	11111	11111					11111	1111	1111	1111		++++		++++		11111	1111	****	1111		-1-1-1-