1 pt

1 pt

0,5 pt

0,5 pt

1 pt

MINESEC - OBC

Épreuve de Mathématiques

EXAMEN : Baccalauréat C/E

SESSION 2009 Durée : 4 heures

Coefficient: 5 (C) / 4 (E)

L'épreuve comporte trois exercices et un problème

EXERCICE 1. / 04 points (série E uniquement)

Dans l'espace muni d'un repère orthonormé direct $(0, \vec{i}, \vec{j}, \vec{k})$, on considère les points :

A(-4; 6; -1); B(1; 2; 2); C(-1; 4; 3).

- 1. a) Démontrer que les ponts A, B et C ne sont pas alignésb) Calculer l'aire du triangle ABC0,5 pt0,5 pt
- 2. Écrire un équation cartésienne du plan (ABC) 1 pt
- 3. Soit I le milieu de [AC], et $D = S_1(B)$ où S_1 désigne la symétrie de centre I.
 - a) Démontrer que les points A, B, C et D sont coplanaires
 - b) Donner la nature du quadrilatère ABCD et puis calculer son aire.

EXERCICE 1: / 04 Points (série C uniquement)

L'entier naturel S désigne la somme des diviseurs positifs de p⁴, où p est un nombre premier plus grand que 2

- 1. Exprimer S en fonction de p. 0,5 pt
- 2. Démontrer que : $(2p^2 + p)^2 < 4S < (2p^2 + p + 2)^2$.
- 3. On suppose que S est un carré parfait et on pose $S = n^2$, où n est un entier naturel.
 - a) Établir l'existence et l'unicité de n lorsque p est fixé. (On pourra utiliser la question 2) 0,5 pt
 - b) Exprimer n en fonction de p.
 - c) Établir que p vérifie la relation : $3 + 2p p^2 = 0$ (on utilisera le fait que $4S = 4n^2$)
 - d) Déduire de c) p et puis n. 0,5 pt

EXERCICE 2: / 05 Points

Un dé cubique pipé est tel que :

Deux faces sont marquées 2 ; trois faces sont marquées 4 et une face est marquée 6. La probabilité pi d'apparition de la face marquée i est proportionnelle au nombre i

- 1. Calculer p₂, p₄, p₆.
- 2. On suppose dans la suite que $p_2 = \frac{1}{6}$; $p_4 = \frac{1}{3}$ et $p_6 = \frac{1}{2}$

On lance deux fois de suite le dé précédent, on note i le résultat du premier lancer et j le résultat du $2^{\grave{e}^{me}}$ lancer

On définit a variable aléatoire X qui au couple (i ; j) associe le nombre i - j

- a) Déterminer l'univers image de X.
- b) Déterminer la loi de probabilité de X. 1,5 pt

Bac C-E 2009

Problème: 12 points

Le problème comporte trois parties A , B et C obligatoires. La partie C est indépendantes .

Partie A

On considère la fonction numérique f de la variable réelle x définie par : $f(x) = \frac{e^x - 1}{e^x + 1}$ et (C_f) sa courbe représentative dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ du plan.

- 1. a) Calculer la dérivée f' de f et dresser le tableau de variation de f. 0,75 pt
 - b) Étudier le signe de la dérivée seconde et en déduire la position relative de (C_f) par rapport à sa tangente T_0 en O. 0,75 pt
 - c) Démontrer que l'origine O du repère est un point d'inflexion pour la courbe (C_f). 0,5 pt
- 2. a) Montrer que f réalise une bijection de IR vers un intervalle I de IR que l'on précisera. 0,5 pt b) Soit g la bijection réciproque de f et (Cg) sa courbe représentative.
 - Montrer que pour tout x de I, $g(x) = \ln\left(\frac{x+1}{x-1}\right)$ 0,5 pt
- 3. Construire dans le même graphique les courbes (C_f) et (C_g) . (on prendra 2cm comme unité sur les axes de coordonnées) 1,5 pt
- 4. Pour tout entier naturel n strictement positif, on définit la suite numérique (U_n) par :
 - $U_n = \int_0^{\frac{n-1}{n}} [\ln(1+x) \ln(1-x)] dx$
 - a) En utilisant l'intégration par parties, montrer que pour tout entier naturel non nul, $U_n = \left(\frac{2n-1}{n}\right) \ln \left(\frac{2n-1}{n}\right) \frac{\ln n}{n}$
 - b) Calculer la limite de la suite U_n et interpréter graphiquement le résultat. 0,75 pt

Partie B

5. Soit S la symétrie orthogonale d'axe (Δ) : y = x et T la translation de vecteur

$$\overrightarrow{OA} = \overrightarrow{3i} + \overrightarrow{j}$$
. On pose : $\varphi = T \circ S$.

- a) Donner la nature de l'application φ . 0,5 pt
- b) Construire l'image par ϕ de la courbe (C_f). 0,75 pt
- 6. On considère :
 - ▶ les vecteurs : $\overrightarrow{e_1} = \overrightarrow{i} + \overrightarrow{j}$; $\overrightarrow{e_2} = \overrightarrow{i} \overrightarrow{j}$,
 - ▶ la droite (Δ') : x y 1 = 0,
 - ▶ et S' la symétrie orthogonale d'axe (Δ')
 - a) Vérifier que le triplet (O ; $\overrightarrow{e_1}$, $\overrightarrow{e_2}$) forme un repère orthogonal du plan. 0,25 pt
 - b) Montrer que dans la base $(\overrightarrow{e_1}, \overrightarrow{e_2})$, le vecteur \overrightarrow{OA} se décompose de façon unique sous la forme $\overrightarrow{OA} = \overrightarrow{V_1} + \overrightarrow{V_2}$,
 - où $\overrightarrow{V_1}$ et $\overrightarrow{V_2}$ sont des vecteurs colinéaires à $\overrightarrow{e_1}$ et à $\overrightarrow{e_2}$ que l'on précisera. 0,5 pt
 - c) On désigne par H et H' les projetés orthogonaux respectifs de A sur (Δ) et sur (Δ ').
 - Montrer que $\overrightarrow{V}_2 = 2 \overrightarrow{HH}'$. En déduire que $T = T_1 \circ S' \circ S$ où T_1 est une translation dont on donnera le vecteur.
 - d) Montrer que $\varphi = T_1 \circ S'$ 0,25 pt

1 pt

Partie C

Le plan est muni d'un repère orthonormé.

Soit (D) la droite d'équation x = 2. Les points M et F du plan (P) ont pour affixes respectives z et 1 - i.

1. Exprimer en fonction de z, la distance de M à la droite (D).

0,5 pt

2. On suppose $z + \overline{z} - 4 \neq 0$.

Pour tout réel m strictement positif, (F_m) est l'ensemble des points M dont l'affixe z est solution de l'équation (Γ_m) suivante : |z-1+i|=m|z+z-4|=0.

a) Déterminer suivant les valeurs de m la nature de (Γ_m) .

1 pt

b) Pour m=1, donner les éléments caractéristiques de $(\Gamma_{\rm m})$

1 pt

Bac C-E 2009